Archivo de etiquetas energías renovables

4 Maneras De Bajo Costo De Obtener Energía Solar En Casa

No siempre son necesarios los paneles solares para lograr ahorrar algo de energía en casa. Estas soluciones económicas te brindan los beneficios de la energía solar.

Luces solares al aire libre

Hay una multitud de luces estacionarias y portátiles que pueden funcionar con energía solar que puedes agregar fácilmente a tu hogar.

Comienza en tu patio. El proceso de instalación para este tipo de luces es bastante simple: solo colocas las luces donde deseas y te aseguras de que el panel solar esté orientado hacia el cielo.

Cargadores de dispositivos

Tus teléfonos y tabletas o laptops necesitan una recarga diaria, así que ¿por qué no hacer que la fuente de energía sea verde? Existen pequeñas estaciones de carga, o bancos de energía solar portátiles, los cuales contienen puertos USB o tomacorrientes que puedes usar para cargar tus dispositivos. La mejor parte es que así como puedes comprarlos ya hechos, también puedes fabricarlos de acuerdo a tus necesidades.

El inconveniente es que los bancos de energía solar cargan sus dispositivos más lentamente que un tomacorriente de pared. Afortunadamente, los bancos pueden recargarse con la luz solar durante el día y almacenar esa energía para cargar sus dispositivos por la noche, cuando realmente no los necesita para cargarlos rápidamente.

Haciendo tus electrodomésticos de cocina solar

No dejes de alimentar tus dispositivos con energía solar. También puedes alimentar tus pequeños electrodomésticos de cocina, como la cafetera, tostadora, o sándwichera, sin necesidad de enchufarlos a una pared. Si bien el ahorro monetario en tu factura de electricidad será pequeño, el planeta seguirá beneficiándose de tu uso de energía renovable. Además, durante los apagones todavía podrás cocinar.

Todo lo que necesitará es un banco de energía de 25 vatios que pueda colocar en una ventana y un inversor de CC a CA para que esto suceda. El inversor simplemente se conecta al banco de energía, por lo que es muy fácil de configurar. O también podrías utilizar tu banco de energía solar del punto anterior.

Si deseas una solución todo en uno, Goal Zero fabrica kits de energía solar con grandes baterías de almacenamiento. Tiene todo lo que necesitas para alimentar tu pequeño electrodoméstico.

Calentadores solares de agua

Tu calentador eléctrico de agua consume alrededor de $ 440 dólares en electricidad por año. Y si hablamos de uno que utiliza gas, la diferencia no es mucha. Puedes ahorrar ese dinero yendo a la energía solar. Hay kits de calentadores de agua solares que puedes comprar por USD$ 150 a USD$ 1,200, por lo que se pagan ellos mismos muy rápidamente.

Típicamente, hay tres tipos diferentes de calentadores de agua solares. Una cosa que todos tienden a tener en común es que calientan el agua y luego la almacenan en sistemas de almacenamiento aislados para mantener el agua caliente hasta que sea necesaria.

Algunas cosas a tener en cuenta al comprar un kit de calentador de agua solar son la durabilidad y la cantidad de agua que puede calentar a la vez. Cuando se trata de durabilidad, asegúrate de que los componentes externos estén a prueba de granizo, especialmente si estás colocando una placa en tu techo. Para el caudal, busca calentadores que puedan proporcionar al menos 2.1 galones de agua caliente por minuto.

Si hacer que la energía solar sea parte de tu hogar, estos elementos solares seguramente te ayudarán a ahorrar electricidad y a dar un paso importante si tu plan también es tener un hogar 100% ecológico.

Conoce la Casa Ecológica de CEMAER.

 

¿Qué Son Los Módulos Solares Bifaciales?

Los módulos bifaciales ofrecen muchas ventajas sobre los paneles solares tradicionales. Se puede producir energía desde ambos lados de un módulo bifacial, aumentando la generación de energía total. A menudo son más duraderos porque ambos lados son resistentes a los rayos UV y las preocupaciones de degradación inducida por potencial (PID) se reducen cuando el módulo bifacial no tiene marco.

Algunas compañías con módulos bifaciales actualmente en el mercado incluyen LG, LONGi, Lumos Solar, Prism Solar, Silfab, Sunpreme, Trina Solar y Yingli Solar. A medida que más fabricantes los comienzan a producir, los módulos bifaciales se abren paso en el mercado.

¿Qué Son Los Módulos Solares Bifaciales?

¿Qué es un módulo bifacial?

Los módulos bifaciales producen energía solar desde ambos lados del panel. Mientras que los paneles tradicionales opacos de lámina posterior son monofaciales, los módulos bifaciales exponen tanto la parte frontal como la parte posterior de las celdas solares. Cuando los módulos bifaciales se instalan en una superficie altamente reflectante (como un techo de TPO blanco o en el suelo con piedras de colores claros), algunos fabricantes de módulos bifaciales reclaman un aumento del 30% en la producción solo por la potencia adicional generada desde la parte posterior.

Los módulos bifaciales vienen en muchos diseños. Algunos están enmarcados, mientras que otros no tienen marcos. Algunos son de doble vidrio, y otros usan hojas traseras transparentes. La mayoría utiliza células monocristalinas, pero hay diseños policristalinos. Lo único que es constante es que el poder se produce desde ambos lados. Hay módulos de doble vidrio sin marco que exponen la parte posterior de las celdas pero no son bifaciales. Los verdaderos módulos bifaciales tienen contactos tanto en la parte frontal como en la parte posterior de sus celdas.

¿Cómo se instalan los módulos bifaciales?

La forma en que se monta un módulo bifacial depende de su tipo. Un módulo bifacial enmarcado podría ser más fácil de instalar que sin marco, simplemente porque los sistemas tradicionales de montaje y estantería ya están adaptados a los modelos enmarcados. La mayoría de los fabricantes de módulos bifaciales proporcionan sus propias abrazaderas para montar su marca específica, eliminando cualquier duda de instalación.

Para los módulos bifaciales sin marco, las abrazaderas del módulo a menudo cuentan con protecciones de goma para proteger el vidrio, y se debe tener especial cuidado para evitar apretar los tornillos y dañar el vidrio.

Cuanto más alto se inclina un módulo bifacial, más energía produce. Los módulos bifaciales montados al ras de un techo bloquean la luz reflejada para que no llegue a la parte posterior de las celdas. Es por eso que los módulos bifaciales se desempeñan mejor en los techos comerciales planos y en los arreglos montados en el suelo, porque hay más espacio para inclinar y rebotar la luz reflejada en la parte posterior de los módulos.

El propio sistema de montaje puede afectar el rendimiento de los módulos bifaciales. Los sistemas de estanterías con rieles de soporte generalmente cubiertos por la lámina posterior de un módulo monofacial sombrearán las filas de las células bifaciales. Las cajas de conexiones en los paneles bifaciales se han vuelto más pequeñas o separadas en varias unidades ubicadas a lo largo del borde del panel para también evitar el sombreado. Los sistemas de montaje y estantería especialmente diseñados para instalaciones bifaciales resuelven la cuestión del sombreado de la parte posterior.

¿Qué Son Los Módulos Solares Bifaciales?

¿Cuál es la perspectiva para los módulos bifaciales?

El año pasado, Vincent Ambrose, gerente general de Canadian Solar para América del Norte, le dijo a Solar Power World que los módulos bifaciales realmente despegarán su fama en los próximos años.

“El desafío con los módulos bifaciales siempre ha sido la imprevisibilidad de la potencia de salida porque depende de lo que haya detrás de los módulos: un techo blanco, una teja oscura, hierba, grava”, dijo. “Escucharemos más acerca de esa tecnología en los próximos dos o tres años “.

El fabricante chino de paneles LONGi Solar cree que estamos entrando en una nueva era de energía fotovoltaica, en la que los módulos de alta eficiencia son supremos. La tecnología bifacial respalda el concepto de usar materiales de calidad para rendimientos de alta energía.

“Los módulos bifaciales son el futuro de la industria”, dijo Hongbin Fang, director técnico de LONGi Solar. “Heredó todas las ventajas de los módulos mono PERC (Emisor Pasivado Y Célula Trasera): alta densidad de potencia que resulta en un ahorro significativo de BOS, alto rendimiento energético con un mejor rendimiento con poca luz y un coeficiente de temperatura más bajo. Además, los módulos bifaciales de PERC también recolectan energía de la parte posterior, lo que demuestra un mayor rendimiento energético. Creemos que los módulos bifaciales de PERC son el mejor enfoque para lograr un LCOE* (costo energético nivelado) más bajo”.

*Se refiere al costo por kilowatt-hora que produce cualquier tipo de sistema de generación de electricidad, como la solar y la eólica.

¿Qué Son Los Módulos Solares Bifaciales?

California Aprueba Norma Para Requerir Paneles Solares En Casas Nuevas

La Comisión de Normas de Construcción de California ha otorgado su aprobación final a una nueva norma de vivienda que es la primera de su tipo en los Estados Unidos. A partir de 2020, la comisión exige que todas las casas nuevas construidas en el estado incluyan paneles solares.

“Estas disposiciones son realmente históricas y serán un faro de luz para el resto del país”, dijo el comisionado Kent Sasaki. “Es el comienzo de una mejora sustancial en la forma en que producimos energía y reducimos el consumo de combustibles fósiles”.

Además de los requisitos del panel solar, el nuevo estándar también incluye un incentivo para que los propietarios de viviendas agreguen una batería de alta capacidad a su sistema eléctrico para almacenar la energía del sol. La norma tiene una exención para los hogares que se construyen en lugares que a menudo están en la sombra.

California tiene una historia de establecer tendencias en todo el país, y esta nueva regla es el siguiente paso en la política ambiental progresiva del estado. El objetivo del estado es reducir drásticamente las emisiones de gases de efecto invernadero y extraer toda su electricidad de fuentes de energía renovables.

La Comisión de Energía de California aprobó por primera vez la regla del panel solar en mayo como parte del Código de Normas de Construcción Ecológica de California. La semana pasada, la Comisión de Normas de la Construcción agregó el requisito con un voto unánime.

Drew Bohan, director ejecutivo de la comisión de energía, dijo que las casas construidas bajo la nueva regla deberían usar un 50 por ciento menos de energía en comparación con los estándares anteriores.

El nuevo requisito de energía solar es para casas unifamiliares y edificios multifamiliares de hasta tres pisos de altura. Agregará alrededor de USD$ 10,000 al costo inicial de una casa, pero las facturas de electricidad más bajas deben compensar eso con el tiempo. Bohan dijo que en el transcurso de una hipoteca a 30 años, un propietario debería ahorrar unos USD$ 19,000.

Los propietarios tendrán la opción de comprar los paneles directamente, arrendarlos o participar en un acuerdo de compra de energía con la empresa constructora.

La Agencia Internacional de la Energía Subestima Constantemente la Energía Eólica y Solar. ¿Por qué?

La Agencia Internacional de la Energía fue creada en 1974 por los países que acababan de sufrir una crisis de petróleo (y se dirigían a otra). Unos 23 participantes de la Organización para la Cooperación y el Desarrollo Económico (OCDE) fundaron la AIE para recopilar y compartir información sobre energía, modelar tendencias futuras de energía y ayudar a mitigar los impactos adversos de (o evitar) crisis energéticas posteriores.

Desde entonces, la IEA se ha convertido en una fuente ampliamente respetada de datos y análisis energéticos. Su anual World Energy Outlook (WEO) se considera el estándar de oro en el modelado de la energía, produciendo una cobertura mediática sin fin y dando forma a las suposiciones de los responsables políticos y la clase de inversión.

Es un tanto molesto, entonces, que la AIE siempre haya sido, y permanezca, tremendamente pesimista sobre la energía eólica y solar. Este pesimismo lo ha llevado a subestimar el viento y la solar una y otra vez, un historial de fracaso que uno podría pensar que molestaría a una agencia conocida por la calidad de su modelado.

Lo que es más difícil de entender es por qué. ¿Por qué la AIE sigue reduciendo las energías renovables, incluso frente a las persistentes críticas? Hay varias historias sobre esto, y ningunas de ellas son enteramente satisfactorias.

(Nota: prácticamente todas las críticas descritas en este artículo también pueden aplicarse a la US Energy Information Administration, que produce pronósticos similares a los de la IEA, centrados en los Estados Unidos).

Vamos a echar un vistazo a las explicaciones que se ofrecen, pero primero vamos a establecer nuestra premisa:

La AIE se durmió en el viento y la energía solar

Que la AIE ha subestimado históricamente el viento y la energía solar es indiscutible. La última mirada al tema proviene del editor de Energy Post, Karel Beckman, quien se basa en un reciente informe del Energy Watch Group (EWG), un grupo de expertos independiente con sede en Berlín. El informe analiza el éxito predictivo de las OEP anteriores.

Aquí está la historia de las adiciones a la capacidad de generación eléctrica por las energías renovables, excluyendo la hidroeléctrica, junto con las proyecciones sucesivas de WEO:

Como puede ver, la IEA sigue aumentando sus proyecciones, pero nunca lo suficiente como para alcanzar la realidad. Sólo ahora se está acercando.

Se vuelve aún peor cuando se adentra en los detalles. Aquí está la cuenta de detalles:

  • WEO 2010 proyectó 180 GW de capacidad solar fotovoltaica instalada en 2024; Ese objetivo se cumplió en enero de 2015.
  • La capacidad fotovoltaica actual instalada excede las proyecciones WEO 2010 para el año 2015 por el triple.
  • La capacidad eólica instalada en 2010 superó las proyecciones de WEO 2002 y 2004 en 260 y 104 por ciento, respectivamente.
  • En el año 2010 se superaron las proyecciones de la energía eólica para el año 2020 en WEO 2002.
  • Otros analistas independientes (como los de Bloomberg New Energy Finance y Citi) se han acercado a predecir con precisión las energías renovables. Los únicos pronósticos que coinciden con el pesimismo impreciso de IEA son los de BP, Shell y Exxon Mobil.

Aquí están las proyecciones de energía eólica y solar de la IEA, que salieron de un post de 2014 de la gente de la eco-consultora Ecofys:

Ya en 2013, el analista de energía Adam Whitmore echó un vistazo al historial de la AIE en materia de renovables. Lo encontró abismal, como todos los demás. Este año, regresó a la WEO para ver si ha mejorado y encontró que, bueno, no lo ha hecho.

Aquí muestra la tasa de crecimiento de las instalaciones anuales de renovables y lo que la AIE proyecta para el futuro:

(Las líneas discontinuas son las proyecciones WEO estándar, lo que sucede si no cambia nada.) Las líneas punteadas provienen del “escenario del puente” del Informe Especial sobre Energía y Cambio Climático de la WEO, que se supone representa alguna ambición política.

Como Whitmore dice, es posible que la tasa de instalaciones solares fotovoltaicas se hunda repentinamente en un 40 por ciento y luego entrar en un largo período de estado estacionario, pero no hay razón para pensar que es particularmente plausible.

La IEA es particularmente inescrutablemente mala en la energía solar, ya que este post de Terje Osmundsen se expone con cierto detalle. Por ejemplo, aquí está la estimación de la AIE del costo de inversión del FV de gran escala en 2020, en comparación con los de otros escenarios:

Eso es un poco loco. FV a gran escala es más barato que en algunos lugares ya.

Suficiente. El punto es: IEA sigue subestimando las energías renovables. ¿Pero por qué?

La gente tiene todo tipo de historias para explicar el pesimismo de la AIE

Al leer y hablar con la gente acerca de esto, he tropezado con varias teorías sobre IEA, algunas más plausibles que otras. He aquí una lista corta (probablemente no exhaustiva).

1) La AIE está en peligro a los combustibles fósiles

Quizás la teoría popular más común es política: la AIE refleja los intereses de los sectores energéticos más poderosos, es decir, los combustibles fósiles. Las industrias de combustibles fósiles están fuertemente sesgadas hacia la preservación del status quo; IEA refleja ese sesgo en los supuestos que dan forma a su modelado. Sus resultados de modelado, que muestran que el statu quo cambia muy, muy lentamente, a su vez tienen por objeto inducir a los gobiernos a subinvertir en energía eólica y solar.

Pero este relato de la economía política en el trabajo es desconcertante. Como dice Beckman:

A pesar de que la AIE puede haber subestimado el potencial de crecimiento de la energía solar y la energía eólica, sí hace un llamamiento constante a los gobiernos para que apoyen esas tecnologías vigorosamente. Del mismo modo, ha estado instando a los encargados de formular políticas durante muchos años para que adopten medidas sobre el cambio climático. En una entrevista que Energy Post tuvo con Fatih Birol el año pasado, dijo que “se necesita una acción radical para transformar activamente el suministro de energía y el uso final”. Birol y la AIE han estado dando mensajes similares durante muchos años.

La AIE tiene informes especiales y grupos de trabajo dedicados a la energía limpia. Defiende la transformación de la energía en cada oportunidad. Si fuera a socavar el viento y la energía solar, ¿por qué haría tanto para apoyarlos?

Se podría argumentar, de hecho, que subestimar las energías renovables ha dado a los gobiernos más incentivos para invertir en ellas, no menos.

(Una vez más, la subestimación de las energías renovables también sirve para exagerar el nivel de los subsidios necesarios para apoyarlos, como lo señala Osmundsen.

No estoy seguro de cómo se podría probar el caso de que las proyecciones de la AIE han dado forma a decisiones de inversión, o mostrar exactamente cómo, pero no he visto mucha evidencia real ofrecida de una manera u otra.

2) Conservadurismo institucional

Whitmore especula:

También puede haber una explicación más profunda basada en el conservadurismo institucional. Tomando una visión conservadora de las perspectivas futuras en el sector de la energía puede ser necesario para evitar ser influenciado por la última moda. Una visión conservadora reconoce las realidades de los horizontes de largo plazo y la vasta escala de los sistemas energéticos del mundo. Sin embargo, puede llevar el riesgo de perder el papel de tecnologías genuinamente transformadoras, como parece ser el caso aquí.

Esto es importante recordar. El sistema energético global ha sido tradicionalmente inmenso y lento. Aquí hay un gráfico de las cuotas de mercado de la electricidad global de 1980 a 2014, compilado por Jessica Lovering, aparecido en un post de Jesse Jenkins:

Pone el “crecimiento explosivo” de las energías renovables algo en perspectiva, ¿no? La energía global se mueve lentamente. Varias tendencias exageradas han ido y venido sin cambiar mucho el panorama general. IEA parece predispuesta al pequeño-c conservadurismo, y con razón, incluso si aumenta la probabilidad de desaparecer las tendencias que sí importan.

3) Un simple error

El informe del GTE tiene frustrantemente poco que decir acerca de por qué la AIE sigue haciendo que las renovables se equivoquen, pero sí lo dice (énfasis añadido):

Una razón clave para las altas desviaciones de la energía solar fotovoltaica y eólica en las proyecciones y los datos históricos es un patrón de crecimiento incorrectamente aplicado. Los informes WEO asumen un crecimiento lineal, mientras que la historia muestra un crecimiento exponencial para las nuevas tecnologías de energía renovable (ER). El crecimiento exponencial actual es parte del crecimiento logístico a largo plazo de las nuevas tecnologías de ER.

Las tecnologías disruptivas, cuando se introducen, tienden a crecer lentamente al principio, luego se disparan exponencialmente, luego se nivelan hacia algo parecido al crecimiento lineal, esta es la curva de “crecimiento logístico” en forma de S. Aquí hay varias curvas de este tipo, en un muy célebre gráfico de Nicholas Felton del New York Times:

A medida que el viento y la energía solar maduran, llegan a la parte superior de la curva S y se asientan en algo más parecido al crecimiento lineal, es probable que las previsiones de la IEA sean más precisas. (Ya está pasando un poco con el viento.)

Whitmore menciona también el crecimiento exponencial:

Puede haber habido una dependencia en los planes de las jurisdicciones individuales, con más precaución de lo que parece con retrospectiva haber sido justificado sobre la tarifa a la cual la política podría moverse. Esto parece haber llevado a una extrapolación lineal de las capacidades cuando las tecnologías estaban en una fase de crecimiento exponencial.

Esto nos lleva a una cuarta posibilidad.

4) Conservadurismo de las políticas

La AIE produce varios escenarios:

  • El escenario Políticas actuales, que asume que las políticas actuales permanecen en su lugar y no se pasan nuevas políticas.
  • El escenario de Nuevas Políticas (a veces Puente) “sirve ampliamente como escenario de referencia de la AIE y tiene en cuenta los compromisos y planes generales de política que han sido anunciados por los países… aún si las medidas para implementar estos compromisos aún no han sido identificadas o anunciadas . “
  • El escenario 450 representa lo que debe hacerse para cumplir con la “meta internacionalmente adoptada para limitar el aumento de la temperatura media global a largo plazo (con una probabilidad de alrededor del 50%) a 2 ° C”.

Ninguno de estos escenarios es, estrictamente hablando, una predicción. Son sólo escenarios elaborados. (Esta confusión entre escenarios y predicciones perturba la relación entre los modeladores y los responsables de la formulación de políticas.)

El problema, como ponen de manifiesto los modelistas de Ecofys, es que el escenario de línea de base ha traído la realidad. El escenario más parecido al crecimiento real de la energía eólica y solar es el escenario 450:

Parte de esta brecha se puede remontar a supuestos de costo extrañamente alto y otras características del modelo WEO. Pero parte se debe al hecho de que la política simplemente se mueve más rápido de lo que la AIE ha estado dispuesta a contemplar.

Aquí podríamos encontrar alguna simpatía por la AIE. Obviamente, no es realista pensar que la política actual se congelará. De hecho, hay buenas razones para pensar que la ambición política en los próximos 20 años superará con creces lo que las naciones están prometiendo explícitamente.

Pero… ¿por cuánto? ¿Cómo se desarrollará la política? No está claro que IEA esté bien posicionada para saber, o que alguien lo es, en realidad.

Los apoyos políticos se están volviendo cada vez menos imprescindibles para el viento y la energía solar, pero todavía son esenciales y la evolución de la política en los próximos años tendrá una enorme influencia en el despliegue. Eso introduce un cierto elemento irreducible de la incertidumbre en las proyecciones eólicas y solares.

5) El modelado es difícil

Tratar de capturar todo el sistema energético global en un modelo y proyectar su evolución a lo largo de varias décadas es… bueno, digámoslo, imposible. Para intentarlo, la AIE tiene que usar algunas suposiciones extremadamente generalizadas que inevitablemente pierden importantes desarrollos en países o tecnologías específicos. Adam James, un investigador de energía en GTM Research, lo puso de esta manera:

El mundo de la energía es muy complejo, y aunque muchos de estos cambios de efecto dominó tienen sentido en retrospectiva, casi nunca van a ser cocidos en las suposiciones hechas en la construcción de estos escenarios.

¿Qué quiero decir con eso? Bueno, mirando hacia atrás, podría haber proyectado que una acumulación de polisilicio conduciría a un exceso de precios; Cayendo en picado los precios del panel fotovoltaico en el momento exacto en que Europa tenía incentivos lucrativos en su lugar. Que entonces, un auge de despliegue de FV llevaría a devolver esos incentivos, dejando la fabricación de FV respaldada por el Estado en China alta y seca. Y para apoyar esa industria y satisfacer el crecimiento interno, China implementaría su propia política para absorber esa oferta con la demanda… pero eso seguro no habría sido el Caso Base – y ahora China es el 25% de la demanda global de energía fotovoltaica. Podrías haber modelado un desastre nuclear que condujera al apagón y luego a un déficit masivo de suministro de energía en Japón, y la FV se apresuró a llenar ese vacío, pero nuevamente no es probable que sea un caso base. Y eso es sólo FV – ahora imagínese tratando de ejecutar ese tipo de proceso de pronóstico basado en escenarios en todos los países para cada tipo de generación de energía.

Por lo tanto, la comprensión de las métricas “fáciles”, como el LCOE (coste de energía escalonado) y la demanda bruta / neta es comprensible: el caso base de la AIE es puramente un reflejo de sus suposiciones de trabajo que deben generalizarse para protegerse de la complejidad descrita anteriormente.

En su publicación, Osmundsen cita al economista jefe de la AIE Fatih Birol, quien fue cuestionado sobre la diferencia entre los resultados de la AIE y los de los analistas de la industria. Birol dijo que la discrepancia es “porque tenemos otros supuestos subyacentes o porque sólo miran una tecnología mientras que miramos el sector de la generación de energía en totalidad”.

Lo que tomó Birol para decir es que los analistas centrados sólo en el viento y la energía solar puede tomar el tiempo para hacer más “bottom-up” de trabajo, teniendo en cuenta las políticas nacionales reales, los precios de mercado y las curvas de aprendizaje de la tecnología. La AIE simplemente no puede hacer eso para cada país, mercado y tecnología energética en el mundo – necesitaría un pequeño ejército de investigadores – por lo que tiene que basarse en supuestos amplios y agregados basados ​​en estimaciones del PIB y crecimiento de la población, Las curvas de aprendizaje de la tecnología y los cálculos un poco anticuados del costo.

Esas suposiciones amplias inevitablemente pierden las cosas. El investigador científico Schalk Cloete examinó los pronósticos de 15 años de la AIE y descubrió que no sólo subestimaba las energías renovables, sino que sobrepredecía el consumo de petróleo y subestimaba el consumo de carbón. De hecho, en términos absolutos, las fallas de la AIE en el carbón y el petróleo fueron mayores que las pérdidas en las renovables (aunque esta última es mayor en términos relativos):

Un modelo energético global como WEO puede simplemente no ser construido para seguir con precisión las tendencias energéticas emergentes y de rápida evolución que dependen en gran medida de la política y de la dinámica política regional. Tales tendencias son más probables ser manchadas y entendidas por los analistas centrados en esos países y sectores particulares. La AIE no es omnisciente.

6) suposiciones malas

Dicho esto, hay supuestos en la WEO que parecen difíciles de defender por cualquier motivo.

Como se mencionó, la AIE sigue asumiendo que la tasa de instalaciones de energía renovable se aplanará o caerá, a pesar de que han estado aumentando fuertemente durante años:

¿Por qué IEA asume esto? Nadie parece saber.

IEA también asume que el viento y el solar cuestan más de lo que realmente hacen. Esta pregunta la respondió el analista de tecnología (y autor de ciencia ficción) Ramez Naam, y dijo:

El [Modelo Mundial de Energía] de la AIE intenta basar sus previsiones en un costo decreciente de energía solar y eólica. Pero los supuestos del modelo son demasiado conservadores. De hecho, la AIE no sólo subestima la disminución del costo futuro de la energía solar. También piensa que la energía solar es más cara ahora de lo que realmente es. Algo de lo que está sucediendo aquí es que la AIE construye modelos de lo que la electricidad de la energía solar y eólica debe costar, sobre la base de ecuaciones que reúnen el costo inicial de capital, el factor de capacidad de las instalaciones, la disponibilidad de buenos sitios, Las instalaciones deben durar, y la tasa de interés que los constructores pagan.

Y la AIE parece equivocarse en varios puntos. Por lo que puedo decir, su modelo utiliza una tasa de interés del 8% (más alto de lo que los desarrolladores realmente pagan); Asume que las instalaciones solares tienen una vida útil de 25 años (cuando la evidencia es que se descomponen en menos del 1% por año, dándoles significativamente más tiempo); Asume que los buenos sitios están desapareciendo cuando, de hecho, hay una abundancia de buenos sitios solares, y las mejores turbinas de viento están abriendo nuevos sitios para el viento; Y asume que los factores de capacidad solar y eólica son estáticos, cuando, de hecho, los factores de la capacidad solar y eólica aumentan con el tiempo.

¿Por qué IEA hace estos supuestos sombríos sobre las energías renovables cuando la contra-evidencia está fácilmente disponible? Nadie parece saber.

La AIE debería actualizar sus hipótesis de modelo y encontrar nuevos socios

¿Adivina qué equipo de modelado ha hecho el mejor trabajo de predecir el crecimiento de la energía eólica y solar en la última década?

Greenpeace.

Esto es lo que Sven Teske, el autor principal de los informes de Greenpeace Energy [R]evolution, dijo al reportero Brian Merchant:

Nuestras proyecciones están mucho más cerca del desarrollo real de energía renovable que las de IEA porque hemos monitoreado atentamente las capacidades de producción y desarrollo de mercados de energía renovable global y nacional desde mediados de los 90 y debatir las posibles tasas de crecimiento con las industrias solar y eólica. Sabemos lo que tienen en sus libros de pedidos para los próximos 3 a 5 años y extrapolarlo para los próximos 5 años. Esto nos da una muy buena idea acerca de lo que hará el mercado de energía renovable dentro de la próxima década.

Este es el enfoque de abajo hacia arriba que da a los analistas objetivo una ventaja sobre los generalistas como IEA. Y ese tipo de trabajo de abajo hacia arriba probablemente no es algo que la IEA va a ser capaz de hacer, al menos en el contexto de tratar de reunir una visión general de todo el sistema energético mundial.

Pero lo que dice Teske sobre las proyecciones a mediano y largo plazo de Greenpeace es interesante y relevante:

Todo más allá de las proyecciones para los próximos 10 años es simplemente una declaración política de nosotros, indicando lo que queremos que suceda. Esto también se convierte en un plan de trabajo para nosotros. Si vemos que un mercado de energía renovable no está funcionando como queremos, intentaremos aprovechar las campañas contra los combustibles fósiles y nucleares ya favor de las energías renovables.

Así que Greenpeace no pretende ser capaz de predecir el futuro lejano, en los últimos 10 años. Decide qué tipo de mundo quiere ver y construye un escenario para lograrlo. Entonces se pone a hacer realidad ese escenario.

Eso me parece una forma mucho más saludable de implementar modelos de energía a largo plazo. En la actualidad, los responsables de la formulación de políticas están en una extraña relación de oroboros con las proyecciones de la AIE, decidiendo qué deben hacer basándose en escenarios que adivinen lo que podrían hacer.

Greenpeace tiene la mejor idea: Decidir lo que debería suceder y luego usar el modelado para demostrar que es posible. Sus proyecciones a largo plazo son sin ambages.

Para hacer algo similar, la AIE necesitará actualizar algunos de sus supuestos anticuados sobre los costos y las tasas de crecimiento eólico y solar. Y aunque la agencia sigue centrada en una visión global de la energía, de la cual el viento y la energía solar siguen siendo una fracción relativamente pequeña, debe trabajar de una manera concertada para comprender mejor la dinámica interna de los mercados eólico y solar y no simplemente transferir los mismos supuestos que aplican a la energía de los combustibles fósiles.

Osmundsen ofrece una buena idea al final de su publicación: la AIE debe asociarse con la Agencia Internacional de Energías Renovables (IRENA), un grupo internacional de expertos creado específicamente para analizar el desarrollo de las energías renovables. Los supuestos y proyecciones de IRENA han demostrado ser mucho más precisos que los de la IEA. “Los gobiernos y las partes interesadas estarían mejor servidos si las dos organizaciones se unen”, dice Osmundsen, “y publicó un estudio conjunto sobre la economía y el potencial de las energías renovables en el sector de la energía”.

Suena como una buena idea. En lugar de pretender predecir lo que podría pasar 20 o 30 años a partir de ahora, vamos a utilizar el modelado de energía para dar a los responsables de las políticas globales algo a lo que aspirar.

Los 10 Artículos Más Leídos del 2016

Como ya es costumbre, no podía faltar nuestro listado de los artículos más leídos del año. Este 2016 ha sido muy especial, ¡CEMAER cumplió 10 años! Mismos que no hubieran sido posibles sin tu apoyo, el de nuestros alumnos y toda la comunidad que se va sumando para aprender más sobre las energías renovables.

En esta ocasión podremos ver en la lista como una papa es capaz de generar electricidad o el diferenciar un panel de una celda solar, fueron de los artículos que más visitas tuvieron. Sin más preámbulo, te presentamos a continuación Los 10 Artículos Más Leídos del 2016,

1. Qué Son las Fotoceldas

Estas resistencias están construidas con un material sensible a la luz, de tal manera que cuando la luz incide sobre su superficie, el material sufre una reacción química, alterando su resistencia eléctrica. Este tipo de dispositivos son distintos a las celdas solares y paneles solares.

Fotocelda

2. Costos de Calentadores Solares

Como podrás ver, es difícil darte un precio exacto, además de que puedes leer este post meses después y los costos de la energía solar cambian muy rápido y muchas veces también varían dependiendo del dólar, la buena noticia es que conforme pase el tiempo es más común que los costos bajen a que suban.

costo calentador solar

3. Cómo Funciona un Panel Solar

Lo primero que tenemos que saber para comprender cómo funciona un panel solar es que los paneles solares están formados de muchas celdas solares, es importante no confundir estos dos términos, una cosa es una celda solar y otra cosa es un panel solar.

4. Cuánto Cuesta la Energía Solar

Probablemente una pregunta que leo o escucho casi todos los días desde hace un par de años. Y lo difícil de responder es que no sólo no se puede dar una cifra exacta, sino que hay que entender varios factores, pero tampoco creas que son matemáticas avanzadas.

costo energia solar

5. Diferencia entre Panel Solar y Celda Solar

Paneles solares, celdas solares, células solares, placas solares, placas fotovoltaicas. Estos son muchos de los nombres que he escuchado sobre los diferentes términos que se utilizan para llamar a los diferentes componentes de la energía solar. Pero es importante conocer la diferencia entre uno y otro.

Diferencia entre Panel Solar y Celda Solar

6. ¿Qué Son Las Ecotecnias?

Las ecotecnias son innovaciones  tecnológicas diseñadas con la finalidad de preservar y restablecer el equilibrio entre la naturaleza y las necesidades humanas. Se caracterizan por aprovechar eficientemente los recursos naturales y utilizar materiales de bajo impacto ambiental en su elaboración.

7. Luz!!! Sin baterías, sin combustible ni luz solar

Es posible que no nos demos cuenta de ello aquí en el mundo desarrollado, pero todavía hay más de 1000 millones de personas en la Tierra que no tienen acceso a la electricidad.

20121128093204-900w (1)

8. ¿Quieres Paneles Solares en tu Techo? Esto es lo que Necesitas Saber

El costo de la energía solar sigue cayendo y el número de instalaciones de paneles solares sigue en aumento, por lo que CityLab decidió charlar con algunos expertos en energía solar para orientar a los lectores con preguntas importantes a considerar antes de hacer el salto a la energía solar.

paneles solares techo2

9. Conoce la Escuela Rural que Ayudaste a Iluminar – Energía Solar

El proyecto que hasta hace poco era tan sólo un sueño, hoy ya es una realidad. La escuela rural “Octavio Paz”, hoy construye el futuro de más de 50 niños.

10. Una papa ilumina una habitación durante un mes -VIDEO

Haim Rabinowitch, de la Universidad Hebrea de Jerusalén, ha dedicado muchos años a la creación de un dispositivo que extraiga energía almacenada en tubérculos, asegura que una simple papa puede iluminar una habitación con una lámpara LED hasta por 40 días.

papa electricidad1

¿ Qué Tipo de Aparatos Puedo Prender con Energía Solar ?

Este episodio #10 de CEMAER Tv fue diferente a los demás. Ahora no tuvimos una presentación, sino mas bien, una plática. En base a lo visto en los episodios anteriores y los conocimientos adquiridos en ellos, ahora nos dedicamos a hablar de ¿ Qué Tipo de Aparatos Puedo Prender con Energía Solar ?.

Esta es una de las preguntas frecuentes cuando se habla de instalar un Sistema de Energía Solar en casa, pero entre los sistemas, existe una diferencia en el momento de planear su instalación, lo cual explicaremos a continuación.

Si no tuviste la oportunidad de ver los episodios anteriores o te has perdido alguno, enseguida te presentamos la lista de los anteriores capítulos de CEMAER Tv:

Episodio #01: Beneficios Ambientales de la Energía Solar.
Episodio #02: Tipos de Paneles Solares – Monocristalinos, Policristalinos y Amorfos.
Episodio #03: Tipos de Sistemas de Energía Solar.
Episodio #04: ¿Cuánta Energía Genera un Panel Solar?
Episodio #05: ¿Como Identificar un Mal Proveedor de Energía Solar?
Episodio #06: Principales Fabricantes de Componentes Solares (grabación no disponible)
Episodio #07: Tipos de Inversores de Energía Solar
Episodio #08: ¿Construir o Comprar un Panel Solar?
Episodio #09: ¿Cómo Funcionan los Sistemas Fotovoltaicos Interconectados a la Red?

Te compartimos ahora el Episodio #10 de CEMAER Tv.

¿Construir o Comprar un Panel Solar?

Con el pasar de los años la tecnología avanza en las diferentes industrias. Tal es el caso de lo que concierne a la fabricación de un panel solar. ¿Pero que es mejor, Construir o Comprar un Panel Solar?.

Hace algunos años en CEMAER teníamos un curso en el que te llevábamos de la mano a construir un panel solar, algo que ya no hacemos ahora por diferentes cuestiones.

En esta ocasión en CEMAER Tv, te enseñamos ¿Qué es mejor, Construir o Comprar un Panel Solar? ¿Cuál crees que sea la respuesta a esta pregunta? Te invitamos a disfrutar de este episodio #08.

Si te has perdido de los episodios anteriores, no te preocupes, te los compartimos ahora:

Episodio #01: Beneficios Ambientales de la Energía Solar.
Episodio #02: Tipos de Paneles Solares – Monocristalinos, Policristalinos y Amorfos.
Episodio #03: Tipos de Sistemas de Energía Solar.
Episodio #04: ¿Cuánta Energía Genera un Panel Solar?
Episodio #05: ¿Como Identificar un Mal Proveedor de Energía Solar?
Episodio #06: Principales Fabricantes de Componentes Solares (grabación no disponible)
Episodio #07: Tipos de Inversores de Energía Solar

Sin más preámbulos aquí están los puntos que se trataron en el episodio #08 de CEMAER Tv:

      • Comparación de costos y precios
      • Comparación de eficiencia y eficacia
      • Ejemplos de sus resistencia
      • Conclusiones

Tipos de Inversores de Energía Solar

Los inversores de energía solar son parte fundamental de un sistema de energía solar. También llamados inversores fotovoltaicos, se encargan de, como su nombre lo dice, invertir la energía que pasa a través de ellos. Los paneles solares no pueden generar por sí mismos corriente alterna, por lo que que necesitan de un inversor.

De manera más específica, un inversor de energía solar convierte la electricidad de los paneles solares (DC o corriente continua) en energía que pueda ser utilizada en tu casa para la televisión, refrigerador y otros equipos de CA (corriente alterna).

Existen diferentes Tipos de Inversores de Energía Solar y de eso se trata este episodio de CEMAER TvA continuación te presentamos los temas de los que se habló en el episodio #07 y el video del mismo:

  • Tipos de Inversores
  • Objetivo de los inversores
  • Inversores Aislados
    -Onda Pura
    -Onda Modificada
    -Gama de Inversores Aislados en C.D. y C.A.
  • Inversores Interconectados
    -Inversores Centrales
    -Ventajas y Desventajas
    -Micro Inversores
    -Ventajas y Desventajas

Si te has perdido de los episodios anteriores, no te preocupes, te los compartimos enseguida:

Episodio #01: Beneficios Ambientales de la Energía Solar.
Episodio #02: Tipos de Paneles Solares – Monocristalinos, Policristalinos y Amorfos.
Episodio #03: Tipos de Sistemas de Energía Solar.
Episodio #04: ¿Cuánta Energía Genera un Panel Solar?
Episodio #05: ¿Como Identificar un Mal Proveedor de Energía Solar?
Episodio #06: Principales Fabricantes de Componentes Solares (grabación no disponible)

Tú eres parte importante de esto. Te invitamos a que des click en el botón. Sé parte del cambio, e inscríbete a CEMAER Tv.

Energía No Renovable: Definición y clasificación

Comencemos por definir que las fuentes de energía se clasifican como: Energía No Renovable, que no pueden ser repuestas en un corto período de tiempo, y Energía Renovable, aquella que es como la energía solar y eólica, las cuales se pueden reponer de forma natural en un corto período de tiempo. En este artículo, nos enfocaremos a la primera, la Energía No Renovable.

Definición.- La Energía No Renovable, es aquella en la que los recursos de suministro son limitados. El suministro proviene de la propia Tierra y, debido a que tarda millones de años en desarrollarse, es finito.

Todos los combustibles fósiles no son renovables, pero no todas las fuentes de energía no renovable son los combustibles fósiles.

Una excelente fuente de energía renovable es la energía solar, puedes conocer mas sobre los beneficios de la energía solar AQUI

Clasificación

Hay cuatro principales fuentes de Energía No Renovable, que pueden dividirse en dos, combustibles fósiles y combustibles nucleares.:

– Petróleo crudo
– Gas natural
– Carbón
– El uranio (también llamada energía nuclear)

Combustibles fósiles

Se derivan de la materia orgánica que ha sido atrapada entre las capas de sedimentos dentro de la Tierra durante millones de años.
• La materia orgánica, por lo general las plantas, se han descompuesto y comprimido con el tiempo, dejando lo que se conoce como depósitos de combustibles fósiles.
• Estos depósitos, y los materiales producidos a partir de ellos, tienden a ser altamente combustibles, por lo que se convierten en una fuente de energía.
• Son difíciles de obtener, ya que normalmente se recuperan a través de la perforación o la minería, pero los combustibles fósiles producen una enorme cantidad de energía.

Petróleo Crudo
El petróleo crudo es un recurso no renovable que se acumula en forma de líquido entre las capas de la corteza terrestre.
• Se recuperan mediante la perforación profunda en la tierra y bombeando el líquido hacia fuera. El líquido se refina y se utiliza para crear diferentes productos.
• Es un combustible muy versátil y se utiliza para producir cosas como los plásticos, combustible para calefacción, gasolina, diesel, combustible para aviones y propano.
Los tres principales países productores de petróleo son Rusia, Arabia Saudita y Estados Unidos.

El pretróleo se extrae, y se envia a centrales para realizarle diferentes procesos, como la refinación.

Como se formo el petroleo. [Ilustración]. Recuperado de: http://static.batanga.com/

Gas
Los gases naturales se encuentran debajo de la corteza de la Tierra y, así como el petróleo crudo, el suelo debe ser perforado para obtenerlo y después bombearlo hacia afuera.
• El metano y el etano son los tipos más comunes de gases obtenidos a través de este proceso.
• Estos gases son los más utilizados en la calefacción del hogar, así como los hornos de gas y parrillas.
Rusia, Irán y Qatar son los países con las mayores reservas de gas natural.

El gas se extrae de manera similar al petróleo. En la imágen se observa como el gas se ubica por encima del petróleo.

[Dibujo] Recuperado de: http://www.ciudadposibledf.org

Carbón
El carbón es el último de los combustibles fósiles. Creado por la materia orgánica comprimida, es sólido como una roca y se obtiene a través de la minería.
• El carbón se utiliza más comúnmente en calefacciones y en centrales eléctricas.
China es el mayor productor de carbón en el mundo.

energía no renovable carbon

ICAL (2012). [Foto]. Recuperada de: http://www.abc.es

Combustibles nucleares
Por último, los combustibles nucleares, se obtienen principalmente a través de la extracción y refinación del uranio.
• El uranio es un elemento natural que se encuentra en el núcleo de la Tierra.
• La mayoría de los depósitos de uranio se producen en pequeñas cantidades que los mineros reúnen, refinan y purifican.
• Una vez reunido, el uranio se convierte en barras o varillas.
• Las varillas se sumergen en tanques de agua. Cuando se alcanza la masa crítica, el uranio comienza a descomponerse y a liberar energía, calentando el agua en la que se encuentra inmerso. Esto se conoce como “fisión”.
• El agua caliente crea presión y ésta acciona las turbinas que generan la electricidad.

Planta nuclear.

(2011). [Foto]. Recuperada de: https://www.veoverde.com/

Estas fuentes de Energía No Renovable han sido las encargadas de abastecer nuestras necesidades durante muchos años. Tienen un gran alcance, no sólo en el potencia que son capaces de generar, como la energía nuclear, también en todo lo que son capaces de convertirse, como la infinidad de productos que utilizamos día a día provenientes del petróleo.  Al principio no sabíamos de las causas de su explotación, y hoy no sólo las conocemos, también hemos sido testigos de ello. El calentamiento global, la contaminación en ríos y mares por fugas de petróleo, lo sucedido en Chernobil, son algunos ejemplos. Sus ventajas son grandes, pero sus desventajas son bastante perjudiciales. Una excelente alternativa es el uso de Energías Renovables, como la eólica y la energía solar.

Si quieres aprender más acerca de las Energías Renovables, no dejes de registrarte en www.cemaer.tv para ver los episodios en vivo y conocer mucho más sobre el tema

Energía Hidroeléctrica – Una Controversial Fuente de Energía

Historia

El agua se ha utilizado como un medio de aprovechamiento de la energía durante siglos. Las ruedas hidráulicas fueron utilizadas por los griegos hace miles de años. A principios de 1800 las fábricas comenzaron a usar la rueda hidráulica para suministrar de energía a maquinas.

No fue hasta finales de 1800 que el uso de la fuerza del agua para generar electricidad se desarrolló. En 1880 una fábrica de sillas en Michigan implementó con éxito un generador de turbina de agua para alimentar las lámparas eléctricas. Poco después, la primera planta de energía hidroeléctrica se desarrolló en las Cataratas del Niágara.

Al principio, las centrales hidroeléctricas sólo podían abastecer de energía a poblaciones cerca de ríos, océanos o arroyos. Hasta que el transporte de energía eléctrica a larga distancia se inventó la energía hidráulica se convirtió en una fuente de energía con gran potencial.

Estados Unidos ha sido el pionero en esta industria, proyectos hidroeléctricos a gran escala, tales como la presa Hoover se han desarrollado desde la década de 1930 hasta la década de los 80’s.

¿Qué es?

Una  central hidroeléctrica se encarga de la producción de electricidad a partir de la energía cinética del agua en movimiento, tales como ríos, arroyos u océanos.

Hay muchas maneras de obtener energía a partir de agua. Los métodos más comunes incluyen grandes presas hidroeléctricas, instalaciones de almacenamiento y bombeo, pequeñas centrales hidroeléctricas para los hogares y las pequeñas comunidades. También existen tecnologías aplicadas en el océano para aprovechar la energía de las mareas y las olas, llamada Energía Undimotriz.

Construcción y potencia.

La construcción de una presa capaz de producir energía hidroeléctrica, se lleva entre 1 y 3 años, hasta entre 5 y 10 años, dependiendo el tamaño, además del número de fases en las que se planee construir. La energía producida también dependerá de estos dos factores. Por ejemplo:

La Presa de las Tres Gargantas, ubicada en China, comenzó su construcción en 1994, pero fue hasta 2003, que comenzó a generar electricidad. Para 2012, se terminó la construcción de la última fase, con lo que es capaz de producir 22.5GW. Tuvieron que pasar 18 años para que la presa generara tal cantidad de energía,

Imágen aerea de la hidroeléctrica de Las Tres Gargantas.

Three Gorges Dam. [Imágen] Recuperada de: http://vizts.com/

De este lado del mundo, en México, la Presa Chicoasén, o también conocida como la Presa Manuel Moreno Torres, se construyó en 6 años, de 1974 a 1980 y produce 2,400MW.

Presa Chicoasén. [Imágen] Recuperada de: http://megaconstrucciones.net/

Una presa más pequeña, ubicada en Colombia, la Central hidroeléctrica de Chivor, tardó 7 años su construcción, de 1970 a 1977, y puede producir 1,000MW.

Energía hidroeléctrica chivor

Represa de Chivor [Imágen]. Recuperada de: http://www.gener.cl/

¿Cómo funciona la energía hidroeléctrica?

Hay muchas formas de aprovechar la energía del agua en movimiento, pero independientemente de qué método se está utilizando, la mayor parte de energía hidroeléctrica se genera mediante el siguiente procedimiento:

1. El agua se dirige a una turbina de agua.
2. La fuerza del agua hace girar la turbina.
3. La turbina está conectada a un generador.
4. El generador produce electricidad.

Energía hidroeléctrica 1

Endesa Educa (2013). Funcionamiento de una central hidroeléctrica. [Ilustración]. Recuperada de: https://www.youtube.com/

Ventajas y Desventajas

Ventajas
Hay muchas al momento de utilizar una presa hidroeléctrica. Puede ser utilizada como una forma efectiva de controlar las inundaciones, almacenar agua para las comunidades, y algunos usos recreativos para el depósito que crea este lago artificial como lo son el canotaje, camping, deportes acuáticos, pesca, etc. Las enlistamos a continuación:

1. La electricidad puede ser producida a una velocidad constante.
2. Si no se necesita electricidad, las compuertas se pueden cerrar y detener la generación de electricidad. El agua se puede guardar para su uso en otro momento cuando la demanda de electricidad sea alta.
3. Las presas están diseñadas para durar mucho tiempo y por lo tanto pueden contribuir a la generación de electricidad durante muchos años, incluso décadas.
4. El lago que se forma detrás de la presa se puede utilizar para los deportes acuáticos y actividades de ocio y recreación. A menudo, las grandes presas se convierten en lugares de interés turístico.
5. El agua del lago se puede utilizar para fines de riego.
6. La acumulación de agua en el lago significa que la energía se puede almacenar hasta que sea necesario, cuando el agua se libera para producir electricidad.

Desventajas
También existen algunas desventajas, que opacan en gran medida a las mismas ventajas. Una presa puede causar estragos en un ecosistema. Puede afectar a muchos animales, incluso humanos, en el suministro de sus alimentos y agua.

También puede afectar a la migración de peces, deteniendo su capacidad para nadar contra la corriente y llegar a sus lugares de desove para reproducirse. A pesar de que existen algunas presas con varios tipos de escalas para peces, también conocidos como ascensores para peces, para ayudarlos a subir la presa, no siempre tienen éxito.

1. La construcción de las presas son extremadamente caras y deben construirse a un nivel muy alto.
2. El elevado costo de la construcción de la presa significa que deben funcionar durante muchas décadas para ser rentables.
3. La inundación de grandes extensiones de tierra significa que el entorno natural se destruye.
4. Las personas que viven en pueblos y ciudades cercanas al lugar que se inundó, deben movilizarse. Esto significa que pierden sus granjas y negocios. En algunos países, las personas son desplazadas por la fuerza de modo que la implementación de los sistemas de energía hidráulica pueda seguir adelante.
5. La construcción de presas puede causar daños geológicos graves. Por ejemplo, la construcción de la presa de Hoover en el EE.UU. desencadenó una serie de temblores.
6. Aunque la planificación y diseño de presas moderna es buena, no ha evitado graves pérdidas humanas e inundaciones al momento de su construcción.
7. En países que comparten el cauce de un río, por lo general significa que el suministro de agua del mismo río, en el siguiente país está fuera de su control. Esto puede conducir a problemas graves entre los países.

Energía hidroeléctrica 3

fobomade.org – Agencia. (2014). Vista aérea de la inundación en Porto Velho, Rondonia. [Imágen].

Energía Hidroeléctrica, ¿Por qué Controversial?

En los párrafos anteriores ya te describimos a grandes rasgos lo que es la Energía Hidroeléctrica. Pero como lo notaste en el título del artículo, la llamamos controversial. En base a lo descrito anteriormente, aquí te explicamos por qué la definimos de esa manera.

Comencemos con la definición de energía sustentable: Es aquella que tiene un bajo costo, es inagotable y no es contaminante, se puede obtener de fuentes naturales prácticamente infinitas como el sol, el aire, la lluvia y el agua.

Ahora bien, la construcción de una presa utiliza maquinaria que tiene emisiones. El funcionamiento de las presas hidroeléctricas es bastante limpio. Sin embargo, las presas bloquean el flujo de agua, provocando un aumento en la concentración de contaminantes de aguas en la parte superior de la presa denominada reserva.

Energía hidroeléctrica 2

Henry Ortiz/Andes. (2014). La hidroeléctrica será base del nuevo modelo de desarrollo del Ecuador. [Foto] Recuperado de: http://www.andes.info.ec/

El principal contaminante generado por la planta de energía hidroeléctrica es el metano, que tiene un impacto en el calentamiento global mucho más alto que el del CO2. Este metano se genera en la reserva que se crea mediante la construcción de una presa.

El “combustible” para el metano es la descomposición de la vegetación, los suelos inundados y la materia orgánica (plantas, plancton, algas, etc.).

Gases de efecto invernadero también se producen por otras circunstancias, como los combustibles fósiles y los materiales de construcción utilizados; el desmonte de tierras para los sitios de reasentamiento, líneas de transmisión y vías de acceso, y la implementación de los sistemas de riego para la agricultura.

El peligro constante

Un análisis presentado en el International Journal, Human and Ecological Risk Assessment encontró que, accidentes en fuentes de energía provenientes del carbón, el petróleo, el gas licuado de petróleo y las hidroeléctricas han costado más que los accidentes nucleares.

Un ejemplo de un accidente, es la central hidroeléctrica Sayano-Shushenskaya, ubicada en Yenisei al sur de Siberia, construida en 1978. Es una de las mayores del mundo, con una altura de 245 metros y 1,066 metros de longitud de coronamiento. Es capaz de producir 22.8 mil millones de kilowatts hora al año.

Una turbina reventó la mañana del 17 de agosto de 2009, luego de no soportar la carga de trabajo, provocando no sólo que la sala de máquinas quedara inundada, si no que los 75 trabajadores que ahí se encontraban perdieran la vida.

Eso sólo fue el comienzo. Tres turbinas quedaron destruidas y 10 hidrogeneradores se deterioraron. Además, una mancha de aceite de 15 kilómetros cuadrados cubrió río abajo. Los territorios cercanos quedaron bajo el agua, afortunadamente se evitó esto para las poblaciones aledañas. La central se mantuvo sin movimiento durante medio año.

Mira aquí el momento de la tragedia.

En el siguiente video puedes ver imágenes del antes y el después de la presa, tras el desastre.

Otros desastres

Los desastres en las centrales de Energía Hidroeléctrica pueden darse por diferentes factores. Desde un error en su construcción, hasta una lluvia torrencial que la presa no pueda soportar debido al peso. A continuación te enlistamos algunas de las presas que han sufrido rupturas y han llegado a causar no sólo pérdidas materiales:

1. Reserva Bilberry (1852), Holme Valley, Reino Unido. 81 muertes. Falla debido a una fuerte lluvia.
2. Presa South Fork (1889), Johnstown, Estados Unidos. 2,209 muertes. Falla debido a una fuerte lluvia, aunado a un mal mantenimiento por parte de los propietarios.

Energía hidroeléctrica South-Fork

(2010). South Fork Dam. [Ilustración]. Recuperada de: http://www.toxipedia.org/

3. Presa Tigra (1917), Gwalior, India. 1,000 muertes, posiblemente más. Falla por filtración de agua desde su construcción.
4. Presa Gleno (1923), Bergamo Italia. 356 muertes. Su mala construcción y diseño, provocaron el desastre.

Energía hidroeléctrica gleno

Diga gleno1. [Ilustración]. Recuperada de: https://en.wikipedia.org/

5. Tangiwai (1953), Río Whangaehu, Nueva Zelanda. 151 muertes. Falla en el cráter del lago del Monte Ruapehu.
6. Presa Malpasset (1959), Côte d’Azur, Francia. 423 muertes. Durante su construcción se utilizaron explosivos, mismos que causaron una falla geológica.

Restos de la presa Malpasset.

Professor X (1988). Ruinas de la presa en 1988. [Foto]. Recuperada de: https://es.wikipedia.org/

7. Kurenivka (1961), Kiev, Ukrania. 1,500 muertes. Falla debido a las fuertes lluvias.
8. Reserva Baldwin Hills (1963), Los Ángeles, Estados Unidos. 5 muertes. Hubo un hundimiento provocado por la sobre-explotación de los yacimientos de petróleo. 277 hogares fueron destruidos.
9. Presa Sempor (1967), Central Java, Indonesia. 2,000 muertes. Inundaciones durante la construcción de la presa, provocaron tal número de muertes.
10. Presa Certej (1971), Certej, Rumania. 89 muertes. La falla en un dique, provocó la ruptura e inhundación de la presa.
11. Presas Banqiao y Shimantan (1975), Zhumadian, China. 171,000 muertes. A pesar del buen diseño y construcción de éstas, el Tifón Nina fue mas poderoso, provocando que colapsaran. 11millones de personas perdieron sus hogares.
12. Presa Laurel (1977), Johnstown, Estados Unidos. 40 muertes. Una fuerte lluvia superó a la presa, rompiendola e inhundandola.
13. Presa Val di Stava (1985), Tesero, Italia. 268 muertes. El mal mantenimiento y un bajo margen de error en el diseño, provocaron su ruptura.

Imágen satelital del antes y el después de la unhundación.

The Val di Stava dam collapse. [Imágen]. Recuperado de: http://blogs.scientificamerican.com/

14. Presa Kantale (1986), Kantale, Sri Lanka. 180 muertes. Mal mantenimiento y fugas, provocaron la falla. Más de 1,600 hogares y 2,000 acres, fueron destruidos.
15. Presa Shihgang (1999), Taiwan. 0 muertos. La falla en este caso, se originó por el llamado Terremoto 921.
16. Presa Camará (2004), Paraiba, Brasil. 3 muertos. El mal mantenimiento, provocaron que 3,000 personas se quedaran sin hogar. Una segunda falla se presentó 11 días después.
17. Presa Delhi (2010), Iowa, Estados Unidos. 0 muertes. Una fuerte lluvia provocó inhundaciones, por lo que cerca de 8,000 personas fueron evacuadas.
18. Presa Fujinuma (2011). Sukagawa, Japón. 8 muertes. El gobierno japonés responzabilizó al terremoto Tōhoku, por esta ruptura en la presa.
19. Presa Bento Rodrigues (2015), Mariana, Brazil. 17 muertes. Uno de los extremos de la presa colapsó. Un pueblo quedó destruido, 600 personas fueron evacuadas, 19 personas desaparecieron. 67millones de metros cúbicos de lodo contaminado de hierrodesembocaron en el Río Doce, y cerca del mar.

Daños provocados por la ruptura de la presa,

Fotografía: EFE. REcuperada de: http://yucatan.com.mx/

¿Y Entonces?

Existen muchas otras fuentes de energía renovable que estan creciendo y fortaleciendose. La Energía Eólica y la Energía Solar, son fuentes que no perjudican al medio ambiente, ya que no se interponen por la fuerza a lo que el planeta ha ido construyendo a lo largo de su vida. Los parques para la generación de este tipo de energías, no necesitan de grandes construcciones que puedan provocar la contaminación de los lugares a su alrededor.

En conclusión, no es posible considerar a la Energía Hidroeléctrica, como una fuente de energía renovable, tomando en cuenta todo el daño y contaminación que produce desde su construcción, hasta los desastres que se pueden tener, si una falla se presenta, ya que ambos factores afectan a la central hidroeléctrica y sus alrededores. Sin lugar a dudas una central hidroeléctrica puede ser una increíble obra de la ingeniería civil, majestuosa, e imponente. Pero, ¿vale la pena el precio de utilizar esta fuente de energía, sabiendo el daño que provoca al planeta y a nosotros mismos?.

Energía Hidroeléctrica Sayano-Shushenskaya

ALEXANDER NEMENOV/AFP/Getty Images. (2009) The Sayano-Shushenskaya hydroelectric power dam.(Foto) Recuperada de: http://archive.boston.com/bigpicture/2009/09/the_sayanoshushenskaya_dam_acc.html